取消
清空记录
历史记录
清空记录
历史记录
植入式生理信号无线遥测系统用于长时间测量清醒无束缚的大鼠、小鼠、兔子、比格犬、猴子、鱼等多种动物的心率、体温和活动量等生理参数。使用此系统可以保证动物在笼内自由活动,不需要麻醉或束缚,这样测量到的生理信号更能反映自然状态下的动物生理状况。可用于生物节律研究和相关的生命体征监测。
植入式生理信号无线遥测系统可无线遥测和记录实验动物的:心率、体温、活动量.
植入式生理信号无线遥测系统由植入体(e-mitter)、接收数据转换器(receiver)、电缆和记录分析计算机(vitalview)构成。1厘米大小的植入体e-mitter集成了传感器、放大器和无线信号发射器,根据测量信号不同有多种规格。植入式e-mitter转发器不需电池,由接收数据转换器(receiver)输出电力。实验人员将植入体埋入动物皮下,生理信号被植入体采集到并转换成相应的电信号后用无线电发射出来,由饲养笼下方的接收器接收到并传递给数据转换器,完成数据转换后送入**处理器进行数据处理。系统可同时连接32个接收器,完成大规模的试验。
植入体(e-mitter)是植入在动物体内的微型设备,它集成了传感器,放大器,数字转换,无线发射的功能并解决了生物体的抗排异反应。植入体有用于测量生物心率,体温和活动量等多种参数的规格。
植入式生理信号无线遥测系统的主要特点:
ø 无线遥测
ø 植入式e-mitter转发器没有电池
ø 长期监测-植入装置后允许连续、遥测实验动物一生
ø 准确、可靠,报告清醒无束缚动物的生理和行为数据
e-mitter(植入体系统)主要技术参数:
er4000 信号接收器
er4000信号接收器,用于给e-mitters充电和接收e-mitters传回来的测量数据。适合标准的大小鼠饲养笼具。
信号接收器的主要参数
vitalview软件
激发接收器和感应器通过vitalview软件连接到电脑。可以记录240个数据通道,典型应用120个测试对象,对于e-mitter系统32个测试对象。
vitalview软件可以设置实验参数和采集数据。软件管理与硬件的连接,并且储存显示基本的图形化的数据分析。软件也提供统计形式的数据显示,可以输出数据。
如只需要测量大鼠、小鼠的核心体温,可以选择植入式体温胶囊,对体温数据进行遥测:
参考文献:
1.ganeshan, kirthana et al. “energetic trade-offs and hypometabolic states promote disease tolerance.” cell vol. 177,2 (2019): 399-413.e12. doi:10.1016/j.cell.2019.01.050
2.li, yongguo et al. “secretin-activated brown fat mediates prandial thermogenesis to induce satiation.” cell vol. 175,6 (2018): 1561-1574.e12. doi:10.1016/j.cell.2018.10.016
3.dodd, garron t et al. “leptin and insulin act on pomc neurons to promote the browning of white fat.” cell vol. 160,1-2 (2015): 88-104. doi:10.1016/j.cell.2014.12.022
4.piñol, ramón a et al. “brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake.” nature neuroscience vol. 21,11 (2018): 1530-1540. doi:10.1038/s41593-018-0249-3
5.li, jin et al. “neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells.” cell metabolism vol. 33,7 (2021): 1449-1465.e6. doi:10.1016/j.cmet.2021.04.019
6.piñol, ramón a et al. “preoptic brs3 neurons increase body temperature and heart rate via multiple pathways.” cell metabolism vol. 33,7 (2021): 1389-1403.e6. doi:10.1016/j.cmet.2021.05.001
7.krisko, tibor i et al. “dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice.” cell metabolism vol. 31,3 (2020): 592-604.e9. doi:10.1016/j.cmet.2020.01.012
8.sustarsic, elahu g et al. “cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis.” cell metabolism vol. 28,1 (2018): 159-174.e11. doi:10.1016/j.cmet.2018.05.003
9.heine, markus et al. “lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice.” cell metabolism vol. 28,4 (2018): 644-655.e4. doi:10.1016/j.cmet.2018.06.020
10.dodd, garron t et al. “a hypothalamic phosphatase switch coordinates energy expenditure with feeding.” cell metabolism vol. 26,2 (2017): 375-393.e7. doi:10.1016/j.cmet.2017.07.013
11.keipert, susanne et al. “long-term cold adaptation does not require fgf21 or ucp1.” cell metabolism vol. 26,2 (2017): 437-446.e5. doi:10.1016/j.cmet.2017.07.016
12.wang, tongfei a et al. “thermoregulation via temperature-dependent pgd2 production in mouse preoptic area.” neuron vol. 103,2 (2019): 309-322.e7. doi:10.1016/j.neuron.2019.04.035
13.chavan, rohit et al. “liver-derived ketone bodies are necessary for food anticipation.” nature communications vol. 7 10580. 3 feb. 2016, doi:10.1038/ncomms10580
14.jiang, lin et al. “leptin receptor-expressing neuron sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease.” nature communications vol. 11,1 1517. 23 mar. 2020, doi:10.1038/s41467-020-15328-3
15.walker, william h 2nd et al. “acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior.” molecular psychiatry vol. 25,5 (2020): 1080-1093. doi:10.1038/s41380-019-0430-4
16.zhang, xue-ying et al. “huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure.” microbiome vol. 6,1 103. 8 jun. 2018, doi:10.1186/s40168-018-0473-9
17.ingiosi, ashley m et al. “a role for astroglial calcium in mammalian sleep and sleep regulation.” current biology : cb vol. 30,22 (2020): 4373-4383.e7. doi:10.1016/j.cub.2020.08.052
18.padilla, stephanie l et al. “kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism.” current biology : cb vol. 29,4 (2019): 592-604.e4. doi:10.1016/j.cub.2019.01.022
植入式生理信号无线遥测系统用于长时间测量清醒无束缚的大鼠、小鼠、兔子、比格犬、猴子、鱼等多种动物的心率、体温和活动量等生理参数。使用此系统可以保证动物在笼内自由活动,不需要麻醉或束缚,这样测量到的生理信号更能反映自然状态下的动物生理状况。可用于生物节律研究和相关的生命体征监测。
植入式生理信号无线遥测系统可无线遥测和记录实验动物的:心率、体温、活动量.
植入式生理信号无线遥测系统由植入体(e-mitter)、接收数据转换器(receiver)、电缆和记录分析计算机(vitalview)构成。1厘米大小的植入体e-mitter集成了传感器、放大器和无线信号发射器,根据测量信号不同有多种规格。植入式e-mitter转发器不需电池,由接收数据转换器(receiver)输出电力。实验人员将植入体埋入动物皮下,生理信号被植入体采集到并转换成相应的电信号后用无线电发射出来,由饲养笼下方的接收器接收到并传递给数据转换器,完成数据转换后送入**处理器进行数据处理。系统可同时连接32个接收器,完成大规模的试验。
植入体(e-mitter)是植入在动物体内的微型设备,它集成了传感器,放大器,数字转换,无线发射的功能并解决了生物体的抗排异反应。植入体有用于测量生物心率,体温和活动量等多种参数的规格。
植入式生理信号无线遥测系统的主要特点:
ø 无线遥测
ø 植入式e-mitter转发器没有电池
ø 长期监测-植入装置后允许连续、遥测实验动物一生
ø 准确、可靠,报告清醒无束缚动物的生理和行为数据
e-mitter(植入体系统)主要技术参数:
er4000 信号接收器
er4000信号接收器,用于给e-mitters充电和接收e-mitters传回来的测量数据。适合标准的大小鼠饲养笼具。
信号接收器的主要参数
vitalview软件
激发接收器和感应器通过vitalview软件连接到电脑。可以记录240个数据通道,典型应用120个测试对象,对于e-mitter系统32个测试对象。
vitalview软件可以设置实验参数和采集数据。软件管理与硬件的连接,并且储存显示基本的图形化的数据分析。软件也提供统计形式的数据显示,可以输出数据。
如只需要测量大鼠、小鼠的核心体温,可以选择植入式体温胶囊,对体温数据进行遥测:
参考文献:
1.ganeshan, kirthana et al. “energetic trade-offs and hypometabolic states promote disease tolerance.” cell vol. 177,2 (2019): 399-413.e12. doi:10.1016/j.cell.2019.01.050
2.li, yongguo et al. “secretin-activated brown fat mediates prandial thermogenesis to induce satiation.” cell vol. 175,6 (2018): 1561-1574.e12. doi:10.1016/j.cell.2018.10.016
3.dodd, garron t et al. “leptin and insulin act on pomc neurons to promote the browning of white fat.” cell vol. 160,1-2 (2015): 88-104. doi:10.1016/j.cell.2014.12.022
4.piñol, ramón a et al. “brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake.” nature neuroscience vol. 21,11 (2018): 1530-1540. doi:10.1038/s41593-018-0249-3
5.li, jin et al. “neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells.” cell metabolism vol. 33,7 (2021): 1449-1465.e6. doi:10.1016/j.cmet.2021.04.019
6.piñol, ramón a et al. “preoptic brs3 neurons increase body temperature and heart rate via multiple pathways.” cell metabolism vol. 33,7 (2021): 1389-1403.e6. doi:10.1016/j.cmet.2021.05.001
7.krisko, tibor i et al. “dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice.” cell metabolism vol. 31,3 (2020): 592-604.e9. doi:10.1016/j.cmet.2020.01.012
8.sustarsic, elahu g et al. “cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis.” cell metabolism vol. 28,1 (2018): 159-174.e11. doi:10.1016/j.cmet.2018.05.003
9.heine, markus et al. “lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice.” cell metabolism vol. 28,4 (2018): 644-655.e4. doi:10.1016/j.cmet.2018.06.020
10.dodd, garron t et al. “a hypothalamic phosphatase switch coordinates energy expenditure with feeding.” cell metabolism vol. 26,2 (2017): 375-393.e7. doi:10.1016/j.cmet.2017.07.013
11.keipert, susanne et al. “long-term cold adaptation does not require fgf21 or ucp1.” cell metabolism vol. 26,2 (2017): 437-446.e5. doi:10.1016/j.cmet.2017.07.016
12.wang, tongfei a et al. “thermoregulation via temperature-dependent pgd2 production in mouse preoptic area.” neuron vol. 103,2 (2019): 309-322.e7. doi:10.1016/j.neuron.2019.04.035
13.chavan, rohit et al. “liver-derived ketone bodies are necessary for food anticipation.” nature communications vol. 7 10580. 3 feb. 2016, doi:10.1038/ncomms10580
14.jiang, lin et al. “leptin receptor-expressing neuron sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease.” nature communications vol. 11,1 1517. 23 mar. 2020, doi:10.1038/s41467-020-15328-3
15.walker, william h 2nd et al. “acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior.” molecular psychiatry vol. 25,5 (2020): 1080-1093. doi:10.1038/s41380-019-0430-4
16.zhang, xue-ying et al. “huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure.” microbiome vol. 6,1 103. 8 jun. 2018, doi:10.1186/s40168-018-0473-9
17.ingiosi, ashley m et al. “a role for astroglial calcium in mammalian sleep and sleep regulation.” current biology : cb vol. 30,22 (2020): 4373-4383.e7. doi:10.1016/j.cub.2020.08.052
18.padilla, stephanie l et al. “kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism.” current biology : cb vol. 29,4 (2019): 592-604.e4. doi:10.1016/j.cub.2019.01.022